Experimental demonstration of clocked single-electron switching in quantum-dot cellular automata
نویسندگان
چکیده
A device representing a basic building block for clocked quantum-dot cellular automata architecture is reported. Our device consists of three floating micron-size metal islands connected in series by two small tunnel junctions where the location of an excess electron is defined by electrostatic potentials on gates capacitively coupled to the islands. In this configuration, the middle dot acts as an adjustable Coulomb barrier allowing clocked control of the charge state of the device. Charging diagrams of the device show the existence of several operational modes, in good agreement with theory. The clocked switching of a single electron is experimentally demonstrated and advantages of this architecture are discussed. © 2000 American Institute of Physics. @S0003-6951~00!03428-8#
منابع مشابه
Experimental Demonstration of a Latch in Clocked Quantum-Dot Cellular Automata
We present an experimental demonstration of a latch in a clocked quantum-dot cellular automata ~QCA! device. The device consists of three floating micron-size metal dots, connected in series by multiple tunnel junctions and controlled by capacitively coupled gates. The middle dot acts as an adjustable barrier to control single-electron tunneling between end dots. The position of a switching ele...
متن کاملClocked quantum-dot cellular automata shift register
The quantum-dot cellular automata (QCA) computational paradigm provides a means to achieve ultimately low limits of power dissipation by replacing binary coding in currents and voltages with single-electron switching within arrays of quantum dots (‘‘cells’’). Clocked control over the cells allows the realization of power gain, memory and pipelining in QCA circuits. We present an experimental de...
متن کاملExperimental Studies of Clocked Quantum - Dot Cellular Automata Devices
Devices based on Quantum-dot Cellular Automata (QCA) computational approach [ 11 use interacting quantum dots to encode and process binary information. In this transistorless approach to computation, logic levels are represented by the configurations of single electrons in coupled quantum-dot systems. In the last few years, significant progress has been made towards the realization of basic QCA...
متن کاملEnergy Efficient Novel Design of Static Random Access Memory Memory Cell in Quantum-dot Cellular Automata Approach
This paper introduces a peculiar approach of designing Static Random Access Memory (SRAM) memory cell in Quantum-dot Cellular Automata (QCA) technique. The proposed design consists of one 3-input MG, one 5-input MG in addition to a (2×1) Multiplexer block utilizing the loop-based approach. The simulation results reveals the excellence of the proposed design. The proposed SRAM cell achieves 16% ...
متن کاملDesign of Optimized Quantum-dot Cellular Automata RS Flip Flops
Complementary metal-oxide semiconductor (CMOS) technology has been the industry standard to implement Very Large Scale Integrated (VLSI) devices for the last two decades. Due to the consequences of miniaturization of such devices (i.e. increasing switching speeds, increasing complexity and decreasing power consumption), it is essential to replace them with a new technology. Quantum-dot c...
متن کامل